Field-weakening Control Algorithm for Interior Permanent Magnet Synchronous Motor Based on Space-Vector Modulation Technique

نویسندگان

  • Jun Li
  • Qinruo Wang
  • Jiajun Yu
  • Jianbin Xiong
چکیده

We investigate the implementation of field-weakening control for interior permanent magnet synchronous motor (IPMSM), and analyze the algorithm of field-weakening control in d-q axes. To deal with the problem that the dc-link voltage is not fully utilized when the voltage regulation is employed, we propose a new field-weakening scheme based on the space-vector modulation technique. The duty-time of zero-voltage vector is used as the feedback signal to decide the switching of fieldweakening. To avoid the regulation lag in the q-axis component, we apply the lead-angle control during the field-weakening progress. The proposed scheme is validated with Matlab/Simulink tool. Simulation results show that the scheme is feasible. It not only improves the utilization ratio of the space-vector-pulse-width-modulation (SVPWM) inverter, but also achieves a smooth transition between the constant-torque mode below the base-speed and the constant-power mode above the basespeed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new optimization of segmented Interior permanent magnet synchronous motor based on increasing flux weakening range and output torque

In this paper a new optimization function for increasing the flux weakening range and output torque value of segmented interior permanent magnet synchronous motor (SIPMSM) is presented. In proposed objective function normalized characteristic current and saliency ratio are considered as two optimization variables during optimization process. The focus of this paper is rotor structure design suc...

متن کامل

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

A Novel High-Performance Field-Weakening Control for Axial Flux-Switching Permanent-Magnet Motor

By combining the field-weakening control principle of a new axial flux-switching permanent-magnet motor (AFFSSPM) with the space vector pulse width modulation (SVPWM) and maximum torque per voltage (MTPV) control principle, a novel field-weakening control strategy for AFFSSPM is proposed in this paper. In the first stage of the field-weakening, the difference between the reference voltage updat...

متن کامل

Design and Implementaion of Interior Permanent Magnet Synchronous Motor (IPMSM) Control based on Integral Terminal Sliding Mode Technique

Permanent Magnet Synchronous Motor because of high energy storage capability is very important in electrical drive industry. Speed control of this motor suffers from parameter variations such as variable inductance. In this paper, The Integral-Terminal Sliding Mode Control (ITSMC) method is used to control the speed (torque) along with d-axis current control. This method is like to classic slid...

متن کامل

Space-Vector PWM Inverter Feeding a Permanent-Magnet Synchronous Motor

The paper presents a space-vector pulse width modulation (SVPWM) inverter feeding a permanent-magnet synchronous motor (PMSM). The SVPWM inverter enables to feed the motor with a higher voltage with low harmonic distortions than the conventional sinusoidal PWM inverter. The control strategy of the inverter is the voltage / frequency control method, which is based on the space-vector modulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013